IMPORTANCE: An interpretable machine learning model can provide faithful explanations of each prediction and yet maintain higher performance than its black box counterpart. OBJECTIVE: To design an interpretable machine learning model which accurately predicts EEG protopatterns while providing an explanation of its predictions with assistance of a specialized GUI. To map the cEEG latent features to a 2D space in order to visualize the ictal-interictal-injury continuum and gain insight into its high-dimensional structure. DESIGN, SETTING, AND PARTICIPANTS: 50,697 50-second cEEG samples from 2,711 ICU patients collected between July 2006 and March 2020 at Massachusetts General Hospital. Samples were labeled as one of 6 EEG activities by domain experts, with 124 different experts providing annotations. MAIN OUTCOMES AND MEASURES: Our neural network is interpretable because it uses case-based reasoning: it compares a new EEG reading to a set of learned prototypical EEG samples from the training dataset. Interpretability was measured with task-specific neighborhood agreement statistics. Discriminatory performance was evaluated with AUROC and AUPRC. RESULTS: The model achieves AUROCs of 0.87, 0.93, 0.96, 0.92, 0.93, 0.80 for classes Seizure, LPD, GPD, LRDA, GRDA, Other respectively. This performance is statistically significantly higher than that of the corresponding uninterpretable (black box) model with p<0.0001. Videos of the ictal-interictal-injury continuum are provided. CONCLUSION AND RELEVANCE: Our interpretable model and GUI can act as a reference for practitioners who work with cEEG patterns. We can now better understand the relationships between different types of cEEG patterns. In the future, this system may allow for targeted intervention and training in clinical settings. It could also be used for re-confirming or providing additional information for diagnostics.
translated by 谷歌翻译
机器学习已广泛采用在许多领域,包括高赌注应用,如医疗保健,金融和刑事司法。为了满足公平,问责制和透明度的担忧,这些关键域中的机器学习模型的预测必须是可解释的。通过整合深度神经网络的力量以及基于案例的推理来产生准确尚不可解释的图像分类模型来实现这一挑战的一系列挑战。这些模型通常通过将其与培训期间学习的原型进行比较来分类输入图像,以“这看起来这样的形式产生解释”。然而,来自这一工作行的方法使用空间刚性原型,这不能明确地解释姿势变化。在本文中,我们通过提出基于案例的可解释的神经网络来解决这种缺点,该神经网络提供空间柔性原型,称为可变形的原型部件网络(可变形Protopnet)。在可变形的Protopnet中,每个原型由若干原型部分组成,其根据输入图像自适应地改变其相对空间位置。这使得每个原型能够检测具有更高的空间变换容差的对象特征,因为允许原型内的部件移动。因此,可变形的Protopnet可以明确地捕获姿势变化,提高模型精度和所提供的解释的丰富性。与使用原型的其他基于案例的可解释模型相比,我们的方法实现了竞争精度,提供了更大的上下文的解释,并且更容易训练,从而使得更广泛地利用可解释模型来进行计算机视觉的可解释模型。
translated by 谷歌翻译
When we are faced with challenging image classification tasks, we often explain our reasoning by dissecting the image, and pointing out prototypical aspects of one class or another. The mounting evidence for each of the classes helps us make our final decision. In this work, we introduce a deep network architectureprototypical part network (ProtoPNet), that reasons in a similar way: the network dissects the image by finding prototypical parts, and combines evidence from the prototypes to make a final classification. The model thus reasons in a way that is qualitatively similar to the way ornithologists, physicians, and others would explain to people on how to solve challenging image classification tasks. The network uses only image-level labels for training without any annotations for parts of images. We demonstrate our method on the CUB-200-2011 dataset and the Stanford Cars dataset. Our experiments show that ProtoPNet can achieve comparable accuracy with its analogous non-interpretable counterpart, and when several ProtoPNets are combined into a larger network, it can achieve an accuracy that is on par with some of the best-performing deep models. Moreover, ProtoPNet provides a level of interpretability that is absent in other interpretable deep models. * Contributed equally † DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
translated by 谷歌翻译
Determining and predicting reservoir formation properties for newly drilled wells represents a significant challenge. One of the variations of these properties evaluation is well-interval similarity. Many methodologies for similarity learning exist: from rule-based approaches to deep neural networks. Recently, articles adopted, e.g. recurrent neural networks to build a similarity model as we deal with sequential data. Such an approach suffers from short-term memory, as it pays more attention to the end of a sequence. Neural network with Transformer architecture instead cast their attention over all sequences to make a decision. To make them more efficient in terms of computational time, we introduce a limited attention mechanism similar to Informer and Performer architectures. We conduct experiments on open datasets with more than 20 wells making our experiments reliable and suitable for industrial usage. The best results were obtained with our adaptation of the Informer variant of Transformer with ROC AUC 0.982. It outperforms classical approaches with ROC AUC 0.824, Recurrent neural networks with ROC AUC 0.934 and straightforward usage of Transformers with ROC AUC 0.961.
translated by 谷歌翻译
This article presents a dataset of 10,917 news articles with hierarchical news categories collected between January 1st 2019, and December 31st 2019. We manually labelled the articles based on a hierarchical taxonomy with 17 first-level and 109 second-level categories. This dataset can be used to train machine learning models for automatically classifying news articles by topic. This dataset can be helpful for researchers working on news structuring, classification, and predicting future events based on released news.
translated by 谷歌翻译
Speech to text models tend to be trained and evaluated against a single target accent. This is especially true for English for which native speakers from the United States became the main benchmark. In this work, we are going to show how two simple methods: pre-trained embeddings and auxiliary classification losses can improve the performance of ASR systems. We are looking for upgrades as universal as possible and therefore we will explore their impact on several models architectures and several languages.
translated by 谷歌翻译
Generic Object Tracking (GOT) is the problem of tracking target objects, specified by bounding boxes in the first frame of a video. While the task has received much attention in the last decades, researchers have almost exclusively focused on the single object setting. Multi-object GOT benefits from a wider applicability, rendering it more attractive in real-world applications. We attribute the lack of research interest into this problem to the absence of suitable benchmarks. In this work, we introduce a new large-scale GOT benchmark, LaGOT, containing multiple annotated target objects per sequence. Our benchmark allows researchers to tackle key remaining challenges in GOT, aiming to increase robustness and reduce computation through joint tracking of multiple objects simultaneously. Furthermore, we propose a Transformer-based GOT tracker TaMOS capable of joint processing of multiple objects through shared computation. TaMOs achieves a 4x faster run-time in case of 10 concurrent objects compared to tracking each object independently and outperforms existing single object trackers on our new benchmark. Finally, TaMOs achieves highly competitive results on single-object GOT datasets, setting a new state-of-the-art on TrackingNet with a success rate AUC of 84.4%. Our benchmark, code, and trained models will be made publicly available.
translated by 谷歌翻译
Legal Prompt Engineering (LPE) or Legal Prompting is a process to guide and assist a large language model (LLM) with performing a natural legal language processing (NLLP) skill. Our goal is to use LPE with LLMs over long legal documents for the Legal Judgement Prediction (LJP) task. We investigate the performance of zero-shot LPE for given facts in case-texts from the European Court of Human Rights (in English) and the Federal Supreme Court of Switzerland (in German, French and Italian). Our results show that zero-shot LPE is better compared to the baselines, but it still falls short compared to current state of the art supervised approaches. Nevertheless, the results are important, since there was 1) no explicit domain-specific data used - so we show that the transfer to the legal domain is possible for general-purpose LLMs, and 2) the LLMs where directly applied without any further training or fine-tuning - which in turn saves immensely in terms of additional computational costs.
translated by 谷歌翻译
Multilingual Neural Machine Translation (MNMT) models leverage many language pairs during training to improve translation quality for low-resource languages by transferring knowledge from high-resource languages. We study the quality of a domain-adapted MNMT model in the medical domain for English-Romanian with automatic metrics and a human error typology annotation which includes terminology-specific error categories. We compare the out-of-domain MNMT with the in-domain adapted MNMT. The in-domain MNMT model outperforms the out-of-domain MNMT in all measured automatic metrics and produces fewer terminology errors.
translated by 谷歌翻译
为偏置场校正和磁共振归一化问题提出了空间正则化的高斯混合模型LAPGM。提出的空间正常化程序为从业者提供了平衡偏置磁场去除和保存图像对比度之间的微调控制,以提供多序列的磁共振图像。LAPGM的拟合高斯参数用作控制值,可用于在不同的患者扫描中标准化图像强度。将LAPGM与单个和多序列设置中的众所周知的词汇算法N4ITK进行了比较。作为一种归一化程序,将LAPGM与已知技术(例如:最大归一化,Z得分归一化和水掩模的利益区域归一化)进行比较。最后,由作者提供了cuda加速python软件包$ \ texttt {lapgm} $。
translated by 谷歌翻译